Developing an integrated climatology of global aerosol properties from a constellation of LEO and GEO satellite observations.

Robert C. Levy (NASA-GSFC/613)

Shana Mattoo (SSAI/GSFC), Pawan Gupta (USRA/Marshall), Yingxi Shi (USRA/GSFC), Lorraine Remer (UMBC), Zhaohui Zhang (Adnet/GSFC), Jennifer Wei (GSFC/610.2), Robert Holz (SSEC/UWisconsin), Shobha Kondragunta (NOAA/NESDIS/STAR), Arlindo DaSilva (NASA/GSFC/610.1)

One reason why we care

https://earthobservatory.nasa.gov/blogs/earthmatters/2018/11/14/satellites-and-ground-sensors-observe-smoke-blanketing-california

Satellites and Ground Sensors Observe Smoke Blanketing California

November 14th, 2018 by Adam Voiland

n

Pawan Gupta (USRA), Robert Levy (NASA), Prakash Doraiswamy (RTI), Olga Pikelnaya (UCLA)

Aerosols (why do we care?)

- They affect visibility
- They affect human health and morbidity
- They enable clouds and precipitation
- They have roles in Earth's chemical cycles (carbon, sulfate, etc)
- They have roles in biology (e.g. transport nutrients)
- They directly impact the radiative budget
- They are both natural and manmade
- They are inhomogeneous in space and time
- Their distributions are changing
- The science of aerosols is truly "interdisciplinary"

I joined Goddard team in late 1998

- Charles (Validation & Fires)
 - *Vanderlei (Clouds & Absorption)
- Rong-Rong (image Processing)
- *Rich (Case studies)
- Shana (programmer)
- Yoram (vision)
- Marcia (visiting faculty)
- *Lorraine (Ocean alg:Aerosol models
- Rob (filling in cracks)
- Allen (Land algorithm)

*Currently affiliated with UMBC

A global team for a global algorithm (I grew up near Maryland)

Global Climate Observing System (GCOS) requirements for **aerosol** climate data record (CDR)

Target Requirements

Variable/ Parameter	Horizontal Resolution	Vertical Resolution	Temporal Resolution	Accuracy	Stability
Aerosol optical depth	5-10km	N/A	4h	Max (0.03; 10%)	0.01
Single-scattering albedo	5-10km	N/A	4h	0.03	0.01
Aerosol-layer height	5-10km	N/A	4h	1km	0.5km
Aerosol-extinction coefficient profile	200-500km	<1km near tropopause, ~2km in middle stratosphere	weekly	10%	20 %

Stability means "drift per decade less than X". Also requires: multi-decade (e.g. 30+ year data record)

Let us focus on Aerosol Optical Depth = AOD

Aerosol optical depth: AOD

The optical depth expresses the quantity of light removed from a beam by scattering or absorption

$$\begin{aligned} \tau = \tau_{aerosol} + \tau_{molecular} + \tau_{gas} + \tau_{cloud} + \tau_{etc}. \\ \tau_{aerosol} = AOD \end{aligned}$$

Sample AOD values:

- 0.02 very clean isolated areas.
- 0.08 background over ocean
- 0.2 fairly clean
- 0.6 -polluted
- 1.5 heavy smoke/dust event
- >3.0 Sun's disk obscured!

AOD is "spectral": varies with wavelength

Angstrom Exponent (AE: slope of AOD in visible) <1.0 = "coarse" sized aerosol >2.0 = "fine" sized aerosol.

Global Climate Observing System (GCOS) requirements for **Aerosol Optical Depth (AOD)** climate data record (CDR):

Target metric	Target
Horizontal Resolution	5-10 km, globally
Accuracy	MAX(0.03 or 10%)
Stability / bias	<0.01 / decade
Time Length	30+ years
Temporal Resolution	4 h

These are requirements for "climate" monitoring Maybe different requirements for other applications (air quality, ocean fertilization, weather forecasting...)

The MODIS sensor

MODIS Terra daytime RGB composite for July 12th, 2013

MODIS Aqua granule RGB composite for August 14th, 2003, 12:05 UTC

Images available online at http://modis-atmos.gsfc.nasa.gov

- 36 spectral bands from visible to thermal IR
- Spatial resolutions (level 1b) 250 m to 1 km at nadir
- Swath width 2,300 km, giving near-global daily coverage
- Flying on polar-orbiting platforms: Terra since 2000, Aqua since 2002.

Aerosol retrieval from MODIS?

What MODIS observes

May 4, 2001; 13:25 UTC Level 1 "reflectance"

Attributed to aerosol (AOD)

There are many different "algorithms" to retrieve aerosol from MODIS

- 1. Dark Target ("DT" ocean and land; Levy, Mattoo, Munchak, Remer, Tanré, Kaufman)
- 2. Deep Blue ("DB" desert and beyond; Hsu, Bettenhousen, Sayer,..)
- 3. MAIAC (coupled with land surface everywhere; Lyapustin, Wang, Korkin,...)
- 4. Ocean color/atmospheric correction (McClain, Ahmad, ...)
- 5. Etc (neural net, model assimilation, statistical, ...)
- 6. Your own algorithm (many groups around the world)

Dark-Target: A "Single View" aerosol algorithm (originally developed for MODIS – Terra/Aqua)

What a sensor observes

May 4, 2001; 13:25 UTC Level 1 "reflectance"

Attributed to aerosol (AOD)

"Established 1997" by Kaufman, Tanré, Remer, etc) "Modified 2005, 2010, 2013, 2015" by Remer, Levy, Gupta, etc

 D

Separate logic over land and ocean Retrieve: AOD at 0.55 μ m, spectral AOD (AE), cloud-cleared reflectances, diagnostics, quality assurance

AOD is "spectrally" (wavelength) dependent (which is correlated to aerosol size)

Used for DT aerosol

MODIS, Dust over Sahara, (R: 0.66μm, G: 0.55μm, E: 0.47μm)

Jan. 7, 2002 (007.1125) (R: 2.13µm. G: 1.64µm. B: 1.24µm)

MODIS, Smoke over Australia, Dec. 25, 2001 (359.2345) (R: 0.66μm, G: 0.55μm, E: 0.47μm) (R: 2.13μm, G: 1.64μm, B: 1.24μm)

"Big" particles (e.g. Dust) reflect in IR "Small" particles (smoke/pollution) do not.

Y. Kaufman, D. Tanré

Assumes: Ambient Size Distribution is approximately bi-lognormal (e.g., from AERONET)

MODIS Ocean Aerosol Retrieval

Modeled and Observed Reflectance from MODIS July 21, 14:50: τ₈₆₅ = 0.48r eff = 0.100.3 eff = 0.15r eff = 0.250.25 -Salt: r eff = 0.98 -Salt: $r_eff = 1.48$ 0.2 Salt: $r_eff = 1.98$ Reflectance Dust: r_eff = 1.48 **-**Dust: $r_{eff} = 2.50$ 0.15 Measured Reflectance 0.1 "S 4: B 6: Ratio=0.604 0.05 0 1200 400 800 1600 2000 Wavelength

Remote Sensing of Spectral Aerosol Properties: A Classroom Experience (Levy and Pinker, BAMS, 2007)

Validation for MODIS product (Level 2)

1.5

1.0

0.5

0.0

May 4, 2001; 13:25 UTC Level 2 "Granule"

- A **Collection** uses consistent calibration and retrieval algorithms (over entire mission)
- Compare both land and ocean products to **AERONET**, separately
- C6.1 Validation for Level 2, 66% are within
 - "Expected Error" (EE)
 - Land: $\pm (0.15\tau + 0.05)$
 - Ocean: $\pm (0.10\tau + 0.04)$
 - Ocean AF: +0.4

Level 3 is gridded aggregations of L2

0.15

Month of 2003

• MODIS is MOD08_D3 (daily) and _M3 (monthly)

MODIS-Terra vs MODIS-Aqua (Twins!)

Aqua (13:30, Ascending)

AOD 0.55 µm: Aqua 2008

0.10

0.05

0.00

-0.05

-0.10

Levy, R. C., et al.: Exploring systematic offsets between aerosol products from the two MODIS sensors, *Atmos. Meas. Tech., 11*, 4073-4092, 2018.

MODIS versus GCOS (AOD)

Target metric	Target	Current with MODIS
Horizontal Resolution	5-10 km, globally	10 km over ice-free and cloud-free scenes (No desert for DT)
Accuracy	MAX(0.03 or 10%)	±(0.04+10%): Ocean ±(0.05+15%): Land
Stability / bias	<0.01 / decade	Nearly stable trends, but offsets still
Time Length	30+ years	20 years and counting
Temporal Resolution	4 h	2+ / day (Terra + Aqua)

Key: Black = almost there, Blue = on the way, Red = not close or unknown

- Terra (18+) and Aqua (16+) have both have well-exceeded their planned missions.
- With luck, they will last until 2022.
 - But for climate, we won't get to 30+ years

For "continuity" we can port the algorithms (Example: DT from MODIS→VIIRS)

• Deal with differences in wavelengths (gas corrections/Rayleigh, etc)

- Deal with differences in resolution, etc.
- Retrieve on new sensors (compared with retrieval on MODIS):

Visible-Infrared Imager Radiometer Suite aboard Suomi-NPP, JPSS-1/NOAA-20, and future JPSS-2, 3, 4

MODIS-Terra vs MODIS-Aqua vs SNPP-VIIRS

- Offsets remain.
- Why different seasonal cycles of differences?
- Calibration?
- Sampling?
- Cloud detection?
- Cloud diurnal cycle?

Towards consistent global aerosol on LEO

VIIRS on SNPP (and beyond) should include all updates (e.g. 6.1) for MODIS.

LEO versus GCOS (for AOD)

Target metric	Target	Current with MODIS
Horizontal Resolution	5-10 km, globally	≤10 km over ice-free and cloud-free scenes
Accuracy	MAX(0.03 or 10%)	±(0.04+10%): Ocean ±(0.05+15%): Land
Stability / bias	<0.01 / decade	Nearly stable trends, but offsets still
Time Length	30+ years	Can do with MODIS + VIIRS
Temporal Resolution	4 h	2+ / day (Terra + Aqua/VIIRS)

What's still missing?

Temporal variability!

Breaking the Temporal Barrier!

% deviation in hourly AOD and AE relative to the daily means in Mexico City.

From: Zhang, Y., Yu, H., Eck, T. F., et al, (2012). Aerosol daytime variations over North and South America derived from multiyear AERONET measurements, *J. Geophysical Research*.

RGB and AOD from ABI for Sep 4, 2017 Canada/Washington fires and smoke mega-event

ABI = Advanced Baseline Imager AHI = Advanced Himawari Imager

Port DT algorithm to GEO! Spectral/Spatial: AHI / ABI ≈ MODIS / VIIRS

	MODIS	VIIRS	AHI	ABI
Blue	0.47/0.5	0.49/0.75	0.47/1.0	0.47/1.0
Green	0.55/0.5	0.55/0.75	0.51/1.0	
Red	0.66/0.25	0.67/0.75	0.64/0.5	0.64/0.5
NIR	0.86/0.25	0.86/0.75	0.86/1.0	0.86/1.0
NIR	1.24/0.5	1.24/0.75		
Cirrus	1.38/0.5	1.38/0.75		1.38/2.0
SWIR	1.61/0.5	1.61/0.75	1.61/2.0	1.61/1.0
SWIR	2.11/0.5	2.25/0.75	2.25/2.0	2.25/2.0

Some details need to be worked out (e.g. lack of "cirrus" band on AHI);
Green band: MODIS/VIIRS @ 0.55 μm, AHI @ 0.51 μm, ABI @ none
In the end, we will report AOD at 0.55 μm for everyone!
Same products as MODIS, including spectral AOD, cloud-cleared reflectance, ete

Diurnal Cycle of AODs from AHI (from KORUS-AQ, 2016) → GEO does have sensitivity to Diurnal Cycle!!

Pawan Gupta

GEO vs LEO : Sep 7, 2017 (±30 minutes of MODIS orbits)

GEO vs LEO: Aug 13, 2018 Sensor View Zenith angle

MODIS.20180813201824

ABI.20180813

- GEO Sensor view distribution for all disk images
- LEO sensor view distribution varies along orbit
- We hope to not see consistent biases.

GEO vs LEO: Aug 13, 2018 Sensor View Angle

- Overall, not too bad, except for when ABI view angle > 65°
- We will have to work on this.

ABI Impact on GEOS-model data assimilation

Arlindo da Silva / Patricia Castellanos (NASA / GMAO)

Global/Regional/Temporal synergy with A consistent DT algorithm? Statistics of UTC (compare with model) Statistics of LST (understand local diurnal cycle)

Subject of a recently funded NASA – MEaSUREs project (with Co–Is = Robert Holz, Jennifer Wei, Shobha Kondragunta, Lorraine Remer, Pawan Gupta) MAKE DATA USEFUL

AOD from LEO + GEO within ±30 mins Sept 7, 2017 @ 2030 UTC

BIG PROBLEM! How to re-process 5+ years of GEO?

- GEO data are huge! Native-resolution full disc is >GB. We want to reprocess entire time series.
- AHI-8 = 5+ years, ABI-16 = 2+ years, ABI-17, etc.
- Need to modernize DT algorithm, parallelize, access to data, "the Cloud", etc.
- Outputs must be small, usable, archived and searchable. ("Useful!")
- Subject of a NASA-MEaSUREs project. (NASA + NOAA + U-Wisc + UMBC).

GEO + LEO

- Aerosol measurements for LEO have long history, validation and use for AQ and climate applications.
- ✓ Aerosol measurements from Geo orbit is a step forward in breaking the temporal barrier.
- **GEO constrains multiple LEO** sensors, .and LEO constrains multiple GEO. Synergy!

Terra

MODIS

(10:30)

Summer (DJF) Autumn (MAM) Winter (JJA) Spring (SON)

Agua

MODIS

(1:30)

Earlwood

- ✓ For the global climate record, consistent and long-term aerosol retrieval is a key challenge.
- ✓ GEO can tell us about AM versus PM in historical record

GOES-16

METEOSAT-8

HIMAWARI-9

The beginning of a new era in satellite remote sensing of aerosol

30

24

18

Towards synergy of aerosol observations 2000 2005 2010 2015 2020 2025 2030 Suborbital MAS/eMAS (aboard ER2 aircraft) **High-Spatial Resolution** MODIS-Terra (10:30) LEO **MODIS-Aqua (13:30)** VIIRS (SNPP 13:30) VIIRS on JPSS-1, -2, -3, -4 AHI ABI (GEOS-R/16), Additional GEO EPIC (DSCOVR at L1) **Beyond**?

Conclusion: Long and wide aerosol climatology

- AOD is an Essential Climate Variable, can be retrieved with the Dark-Target algorithm, from any sensor that has sufficient observations of multi-spectral (VIS/NIR/SWIR) reflectance.
- Validation shows that DT on MODIS nearly meets 2 out of 5 requirements of a Climate Data Record: Spatial resolution and accuracy.
- **MODIS C6.1** is improvement over C6 due to new urban retrieval, and upstream corrections that reduce relative drifting of Terra versus Aqua.
- C6.1 on MODIS still shows unexplained 10-15% global offset between Terra and Aqua. With continued updates in calibration/stability of sensor observations, we may meet 3rd CDR requirement of consistency.
- **DT is ported to VIIRS**, and the products are almost consistent enough to continue time series to beyond 30 years, meeting **4**th **CDR requirement**.
- With DT retrieval on GEO sensors, and more coming online, we are getting closer to meeting 5th CDR requirement of temporal resolution.

https://darktarget.gsfc.nasa.gov/

